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ABSTRACT

We present a new approach for calculating tunnelling amplitudes from a

non-localised initial state. Gener_sing the matcl_ng conditions and equations

of motion to allow for 'complex' momentum permits a description of tunnelling

in the presence of so-called classical motion. We comment on possible applica-

tions of the method.
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That quantum mechanical probability density can permeate into regions in which a

classical particle is forbidden was (and perhaps still is) one of the more intriguing features of

the Schr6dinger equation. Rapidly however, it was turned into one of the major successes of

the early wave mechanics in providing a successful theoretical description of alpha particle

emission in radioactive decay. Since then, tunneLLing has found many applications, yet

our understanding of many aspects of the phenomenon remains limited. Motivated by

difilculties 1 in calculating tunnelling amplitudes in recent two-fleld inflationary models 2-4,

we re-examlned the quasi-classical approximation to the Schr6dinger equation to see if

one could incorporate more complicated evolution of the wave function without losing the

simplicity of that approach. We found that the problem reduces to two key issues: that

of incorporating complex momentum into a quasi-classical description, and the related

problem of matching conditions between different asymptotic regimes. Here we will show

how to resolve these questions, illustrating some results from a test potential. A more

detailed exposition may be found in a companion papeP.

First let us summarise the current status for calculating tunnelling amplitudes. Most

tunnelling calculations proceed via the quasi-classical approximation s, which extracts the

leading order "classical" behaviour of the system. If we assume the wave function takes

the form

: q,C ,t) = , (1)

then the Schrodinger equation gives

VG) 2 i_t V_ G E U(x) (2)2m

as the equation of motion for tr. The quasi-classical approximation drops the O(_t) term

in (2), which dearly requires that IVo-I' > nlV2o-I.

In tunnelling, we need to solve the Schr6dinger equation in regions where U > E,

therefore we set tr = ig and obtain

(Vg)' = 2m(_r- E) (3a)

=_ g = _/2rn(U- E)dI, (3b)
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where 1is the path which minimises the integral and x! is the point of emergence of that

path into the classical r_gime. This geometric solution to the problem in more than one

dimension was first obtained by Banks, Bender and Wu 7 for the case of tunnelling from

a localised state, they called l the eJcape path. The calculation of 1 and g in practise

is facilitated by the Euclidean time prescription whereby we associate Vg with Pc, a

Euclidean momentum, and (3a) becomes a Hamiltonlan problem of particle motion in the

(inverted) potential -U. It is then a classical dynamics problem to calculate the trajectory

x(r), which interpolates between the initial position and the position of emergence from

the barrier.

This approach is powerful, however it does have one crucial restriction, namely, it

requires that space be divided into regions in which V<r is entirely real or entirely imaginary

so that we can identify p = V0" with some i("time"). Clearly we then need i to vanish on

the boundaries between these regions. In the context of the escape path, we need ±2 _ 0

at each end of the path. In general it requires two initial conditions to fix the start of

the escape path, which uses up the requisite number of boundary conditions, leaving no

additional freedom for the end point, which in general will not satisfy _2 = 0. Another

related problem is that we have no allowance for the transport of real momentum under a

barrier, which we know definitely does occur in the case of a continuous symmetry. There

is also the problem of picking an initial position from which to integrate, since we can only

localise a particle at the expense of information about its momentum. We clearly need a

more general picture of tunnelling.

In order to solve the Schr6dinger equation when the momentum is complex, we rewrite

(2) in terms of the real variables y and g, where _ = f + ig:

(VI) 2 _ (Vg) 2 + _V_g = 2raCE- tr)

2Vf.Vg - hV2f = O.

(4a)

(4b)

In the quasi-classical approximation we neglect the O(t_) terms in these equations, this will

be valid unless

(5)
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i.e. unless IVf[, IVg] is small or ]V2fl, IV2gl large, this latter situation occurs at caustics

of the motion. The simplest way to visualise this is to consider a plane wave scattering

oiT some barrier. The integral curves of Vf trace out the path that a family of classical

particles would follow in that potential. Clearly, neighbouring, initially parallel, trajecto-

ries will at some stage cross, and at such a place, referred to as a caustic, V2f becomes

unbounded.

Having identified the boundary between different asymptotic regions, we now focus on

the turning surface to obtain the matching conditions. We first consider a local coordinate

system along the caustic .[z,9 i} where z is orthogonal distance from the caustic, and the

yi are cartesian coordinates in the surface of the caustic. Provided the caustic is not too

strongly curved, the potential is roughly a function of z, and we may deduce that the true

(continuous) solution of the Schr6dinger equation is

_b(z,7/')= eiP,"/nAi _-2/3(2raU, =),/3 z + _ (6)

where Ai(z) is the Airy function. That the curvature of the causticnot be too large trans-

lates to a bound on V_U': noting that (6) implies that the quasi-classicalapproximation

breaksdownwhenI=I< )-,/3,weobtainalimitof << Equa-

tion(6) glvcs us the inltalconditions for f and g for integratingout beyond the caustic.

Clearly the paralld momenta, Pl axe conserved across the boundary, i.e.Vif, Vig con-

served. The orthogonal components are determined on eithersideof the boundary by using

equation (4a) and demanding that real(V f) and imaginary (Vg) momenta be orthogonal

(equation(4b)). This fixesthe initialconditions for the momentum on the other side of the

boundary. We now need to propagate f and g out from the boundary, i.e.solve (4a,b).

In order to facilitatethe solution of (4a) we assume E ._ U, which implies that Vg is

dominant under the barrier,however, we do not wish to neglect Vf as an O(h) correction,

otherwise we would use existingtechnlqucs. Instead we want to consider a situationwhere

_ _ _ 1, and iterativelysolve

(Vg)" = 2mU - (2mE - (V f)_) (7_)

vy.vg= 0, (7b)
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bearing in mind that (V f) 2, E are of the same order, and small compared with (Vg) 2, FT.

The first step is to find the leading behaviour, that is, to solve (Vg) 2 = 2mU. In

order to do this, we use existing techniques. We regard the solution under the barrier as

being composed of a family of escape paths {l(a)} originating from the turning surface at

(!/_..),0), and propagating under the barrier until a caustic is reached. Along each escape

path we have a solution for g determined by (3b) with E = 0. This will give us a leading

order solution to the problem. Now we use the information from (7b), that f is constant

along integral curves of g, to set f = f(_0_..)(x)) where _o_,,)(x) = V_.) are the equations

for the family of escape paths 1(..). Finally, we input this solution for f back into (7a) to

obtain the correct form of g to order E/U. Once we have the solution under the barrier

we may match across into the far 'classical' r_gime and follow a similar procedure to the

above to complete the solution of the Schr6dinger equation.

To recap: this method solves the SchrSdinger equation in the stationary quasi-classical

approximation for tunnelling in potentials with non-localised minima. The restrictions on

the type of potentials it can deal with are that E << U under the barrier and that the

transverse derivatives of U at the matching boundary be bounded by h-4/3..,rr 2/3=. This

method is therefore ideal for problems involving scattering off a 'wall'.

As a simple illustration of the method, consider a plane wave, e_k'x/h, scattering off

a wedge potential in two dimensions, U(x) = VO(z)®(a - z - eV), see fig. 1. Here, our

initial conditions at z = 0 are g = 0, f = /%V,, g,, = 2_V and f,. = 0. Integrating

out is straightforward since the potential is constant and gives g = V_-_--V_. Imposing

f =const. along integral curves of g, which in this case are V = V,, simply gives / = k,v,

then inputting this back into (7a) gives g = X/2mV- kt2z = _z. In this example our

iterative procedure under the barrier is now complete. At the far edge of the barrier the

appropriate boundary conditions are now non-standard, the momentum parallel to the far

edge being complex: Pll = (P_ -ie_;)T, where T is the tangent vector to the far edge

of the barrier. Orthogonallty of the real and imaginary momenta and (7a) requires that

P± = (Px + ie_;_x )N+O(ta) • Setting

_=z-a+ev , T/=V-¢(z-a) (8)
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(see fig. 2) we may integrate out from the boundary to obtain

fo., = Pl ( + P, 77

Pl

(9)

Note some interesting features about this solution. The incoming and outgoing real mo-

menta are not parallel, although they subtend the same angle with each side of the barrier.

Note too that g is spatially dependent, decreasing in regions where the barrier is thinner.

However, the really curious features of scattering off this potential are most clearly ex-

hibited if we consider a Gausslan wave packet scattering off the barrier. For the sake of

definiteness we take the momentum to be peaked at (Pl,P,) with spread A_2, hitting the

origin at t = 0. Such an incident wave packet might reasonably be supposed to represent

a particle scattering off the barrier. For the trajectory of the outgoing peak we obtain

= p,(1 + 1 + (1 -- 3 (10)

with a transmission amplitude of e -''ou'/t'. In other words, a particle 'incident' on the

barrier at _ = z = !1 = 0 emerges at T/_ = 2--_(1 + 1 -2aMi/,¢)_). One can also calculate

the time of emergence, f_ - "_P2 fl _ 2tt_tt/t¢)3 The particle emerges considerably
-- 2Ahpx_ k_

'downstream' from where one might expect it, neither at x = (a, 0), nor at x : (u, ca), but

at x = (a--eT/e, _/e). Furthermore, the time at which it emerges is potentially large compared

with _ and even, if P3 < 0, potentially negative! In fact, both these peculiarities arise

from a simple physical reason, the fact that the most energetically favourable time for the

Gaussian to tunnel is not necessarily when the peak hits the barrier. Tunnelling amplitudes

depend exponentially on the size of the barrier, therefore it is more favourable to tunnel

where the barrier is thinner, hence the dependence of the transition amplitude on zo,t. On

the other hand, the probability density along z - 0 is damped by an exponential factor

depending upon how far away that point is from the peak of the Gaussian. Clearly there

will be a pay off between these two factors which may mean that it is more energetically

favourable for the fringe of the Gausslan to tunnel, rather than its peak.
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Apart from giving an initial step in the problem of calculating two-field tunnelling

amplitudes, our method (and illustrative example) may also have applications in other

areas of tunnelling theory. For instance, one of the outstanding problems in tunnelling

is defining a unanimously acceptable tunnelling time. From the uncertainty principle, we

know such a time, _T, should be of order _, but when using stationary states in a time

independent potential, finding tT is not so straightforward, indeed quite a controversy

exists s. Our example suggested that one of these definitions, the extrapolated phase time 9

is not a good definition of tunnelling time as it stands. Unfortunately, we can shed no light

on what is!

While we have only applied this method to a small range of examples s, the results

we have so far obtained are encouraging: the modifications seem to give quite dii_erent

qualitative pictures for scattering. The esssential step forward from the Banks, Bender

and Wu approach was to identify a general boundary between different WKB r4gimes. It

can only be hoped that a similar generalisation of Coleman's field theoretic procedure 1° is

possible.
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Figure 1. The barrier U(x) -- VO(x)(_(a - x - ey).

9



out

Figure 2. Trajectory of Gaussian peak scattering off barrier.
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